Blind Signal Separation Methods for the Identification of Interstellar Carbonaceous Nanoparticles
نویسندگان
چکیده
The use of Blind Signal Separation methods (ICA and other approaches) for the analysis of astrophysical data remains quite unex-plored. In this paper, we present a new approach for analyzing the in-frared emission spectra of interstellar dust, obtained with NASA's Spitzer Space Telescope, using FastICA and Non-negative Matrix Factorization (NMF). Using these two methods, we were able to unveil the source spectra of three different types of carbonaceous nanoparticles present in interstellar space. These spectra can then constitute a basis for the interpretation of the mid-infrared emission spectra of interstellar dust in the Milky Way and nearby galaxies. We also show how to use these extracted spectra to derive the spatial distribution of these nanoparticles.
منابع مشابه
Calculation of Leakage in Water Supply Network Based on Blind Source Separation Theory
The economic and environmental losses due to serious leakage in the urban water supply network have increased the effort to control the water leakage. However, current methods for leakage estimation are inaccurate leading to the development of ineffective leakage controls. Therefore, this study proposes a method based on the blind source separation theory (BSS) to calculate the leakage of water...
متن کاملBlind Signal Separation Using an Extended Infomax Algorithm
The Infomax algorithm is a popular method in blind source separation problem. In this article an extension of the Infomax algorithm is proposed that is able to separate mixed signals with any sub- or super-Gaussian distributions. This ability is the results of using two different nonlinear functions and new coefficients in the learning rule. In this paper we show how we can use the distribution...
متن کاملExtraction of Sensory part of Ulnar Nerve Signal Using Blind Source Separation Method
A recorded nerve signal via an electrode is composed of many evokes or action potentials, (originated from individual axons) which may be considered as different initial sources. Recovering these primitive sources in its turn may lead us to the anatomic originations of a nerve signal which will give us outstanding foresights in neural rehabilitations. Accordingly, clinical interests may be r...
متن کاملBlind Signal Separation Using an Extended Infomax Algorithm
The Infomax algorithm is a popular method in blind source separation problem. In this article an extension of the Infomax algorithm is proposed that is able to separate mixed signals with any sub- or super-Gaussian distributions. This ability is the results of using two different nonlinear functions and new coefficients in the learning rule. In this paper we show how we can use the distribution...
متن کاملResearch of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information
Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...
متن کامل